
1	

Brain-like Computing –���
Technologies and Architectures	

Prof. Pinaki Mazumder
University of Michigan
Ann Arbor, MI 48105

Acknowledgement: National Science

Foundation (CCF & ECCS)

EVOLUTION OF
NEUROMORPHIC
COMPUTING:

Perceptron (’60)
(10 E 2 neurons)

Neural Net (’90)
(10 E 3 Neurons)

Neuromporphic
Hardware (’00)
(10 E 5 neurons)

Multi-level
Nanocrossbar
(10 E 7 neurons)

Perceptron Mark 1 Hopfield Net Chip TrueNorth (IBM) ~ 1 M Neurons

•  Memristor
•  Spintronics
•  MQW Devices
•  Nanoscale CMOS

Gartner Hype Cycle

Designed by
 Mazumder
Group 1992

Self-Healing VLSI Design
 (1989-1996)

Mazumder Group’s Neuromorphic Research

•  IEEE Trans. on CAS, 1993
•  IEEE Trans. on CAS, 1993
•  IEEE Trans. on Computer, 1996

Hopfield Neural Net as Algorithmic
Hardware for Spare Allocation by
Node Cover over Bipartite Graph

Cellular Neural Networks
 (2008-2013)

•  IEEE Trans. on VLSI, 2009
•  IEEE Trans. on Nanotechnology, 2008
•  IEEE Trans. on Neural Nets, 2014
•  IEEE Trans. on Nanotechnology, 2013
•  ACM Journal on Emerging Technologies

 in Computing Systems, 2013

•  Color Image Processing
•  Velocity Tuned Filter
•  Memristor/RRAM based CNN
•  RTD+HEMT based CNN

Learning based VLSI Chips
 (2010-2016)

STDP Learning for Position Detector
STDP Learning for Virtual Bug Navigation
STDP Learning for XOR/Edge Detection

Q-Learning for Maze Search Algorithm on
Memristor Array

Reinforcement Learning/Actor-Critic NN
for Optimal Nonlinear Control Applications

•  Proceedings of the IEEE, 2012
•  Nano Letters Journal, 2010
•  IEEE Trans. on Computer, 2016
•  IEEE Nanotechnology, 2011
•  IEEE Nanotechnology, 2014
•  IEEE Cellular Neural Networks, 2012

Neuromorphic
Self-Healing

Memory Design
using Memristor Array

Product Code (SEC), Augmented PC (DEC) à Requires Muxes (~8%)
Hamming Code (SEC) à Higher Overhead
Projective Geometry Code (DEC/TED) à Galois Field Decoding, …
BCH & Reed Solomon (DEC) à Decoding complexity is high

High Density a-Si Based Nano-Crossbar

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Ag
p-Si

< 50 kΩ

50 ~ 150 kΩ

150 ~ 300 kΩ

300 k ~ 1 MΩ

Not Written

1kb crossbar
array

Jo et al.
Nano Lett.,
9, 870
(2009).
From Prof.
Wei Lu’s
Research
Group It is Scalable and CMOS Compatible.

Defects ! & More Defects!!
400 cells & 31 defects=8%

Fabbed by
Wei Lu’s
Group at
Univ. of
Michigan

Compaction of Faulty Array &
Find Vertex Cover in Bipartite Graph

[R1, R2; C1, C3]
Find Vertex Cover:

Unrestricted Vertex
Cover Problem can
Be solved in Polynomial
Time by Bipartite Graph
Matching Algorithm.
However, Restricted
Vertex Cover Problem is
NP-complete.

R2
R1 C1

C3

Defective Cells are
Edges in Bipartite Graph

Mazumder & Yih, IEEE Trans. on CAD, 1992

Neuromorphic Self-Healing for Any
Type of Memory Array

M.D. Smith & P. Mazumder,
IEEE Trans. on Computers,
Vol. 45, No. 1, Jan. 1996, pp.
109-115.

100%

20%

With BISR

Without
BISR

10,000 trans.

Fusion of Sensing & Processing

Nanoscale
Cellular Neural Network (CNN)

by Using
Quantum Tunneling Devices &

Memristor Array

3-D Confined
Quantum Box

Array

Memristor
Array

Fig. 2 Schematic view of the pyramid-shape In0.5Ga0.5As quantum dot.

	��
�������

�����

�����

	�����

UNIVERSITY OF
MICHIGAN �

p-Si p-Si
a-Si a-Si

Metal
Metal

Low Resistance High Resistance
 State (LRS) State (HRS)

start

Define quantum
dot structure

Save mass (e and
h), band

alignment, doping
distribution in files

Calculate 2D wave
function in xy

plane

2D wave function

Solve 1D
Schrodinger

equation (in z
direction)

Using boundary
condition to get 3D

S-Matrix

Transmission rate
T(E)

Integrate T(E) over
all possible energy

Tunneling current

end

)()()()(121 TTTTT NN ⋅⋅⋅⋅⋅= −

3D-SBEM-TIS

20
40

60
80

100

20

40

60
80

100
-0.2

-0.1

0.0

0.1

0.2

Φ
3

Y Axis

X Axis

0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

2.5

χ(
z)

z (nm)

UNIVERSITY OF
MICHIGAN (C) 2015 Professor Pinaki Mazumder ��

Edge Detection

Vertical Line
Detection

To Pixel

IEEE Trans. on Nanotech, 2008

Analog Programmable Nano-Architecture for Static and
Dynamic Image Processing

(b)

Memristor

RTD

(a)

Input (I)

Center (C)
Output (O)

0 1 2 3
10-11

10-9

10-7

10-5

10-3

Cu
rre

nt
(A)

Voltage (V)

Qdot + Memristor Chip

IEEE Trans. On Nanotechnology, 2013

Analog Programmable
Unconventional Computing

2222

Edge Detection HLD & VLD

Molecular Computer?

Qdot	+	Memristor	Chip	

IEEE Trans. On Nanotechnology, 2013

Spike Timing Dependent
Plasticity (STDP) Learning

Networks using Memristors

Biological Neuron Model
Ionic Transport in Biological Neuron & its Silicon Implementation

Hodgkin-Huxley Model

Spike Timing Dependent Plasticity
(STDP) Learning Networks

15	

Synaptic Weight

Pre

Post

Previous Approach of STDP Implementation
On Crossbar with Constant Amplitude

Programming pulses with different pulse widths

Conductance change after each pulse

100 µs

1.  Digitally Controlled

2.  Constant Amplitude

3.  Temporal Correlation

Position Detector Application

•  Split up area into a 5x5 grid

•  Each grid has one neuron that

is connected to an adjacent
neuron through STDP synapse

•  Detect a light source at any

position on the grid

•  No post-processing circuitry
necessary

•  k-Winner-Take-All (k-WTA)
implementation

17	

STDP Neural Circuit for Position Detector

Bases Memristor
Design

CMOS
Design

Synaptic area < (0.5µm x
0.5µm)

17µm x 16µm

Synaptic Density Ø 4 devices/µm2

x1000
0.0037 devices/

µm2

Neuron area 20µm x 10µm 8µm x 12µm
Neuron Density 0.005 devices/

µm2

x2

0.0104 devices/
µm2

Volatility Nonvolatile Volatile
Ebong, and Mazumder, Proceedings of the IEEE, Feb. 2012.

STDP Circuits for XOR/Edge Detector

IEEE Nano 2011

	Inhibitory	=20	MΩ	
Excitatory	=	5.6	MΩ)	S	

n23	=	n12	XOR	n14	=	1	when	n12=0	&	n14=1	 n23	=	n12	XOR	n14	=	0	when	n12=1	&	n14=1	

Input	=	011110;	Output	=	010010	

Basic Neuromorphic
Functions: WTA,
XOR, Edge Detector
Were implemented
Using STDP learning
scheme

Reinforcement Learning Networks

Memristor Based
Q-Learning Network

CMOS Digital
Actor-Critic Network

Fig. 1. Maze example showing starting position (green square) and ending
position (red square)

(3) can be discretized into n different applications of Vapp

for tspec. In addition, we have shown through [12] that
this discretization leads to memristors behaving as (4). In
(4), a = 1 � �Vapptspecn, b = �Vapptspec, � is defined
as (2⌘�R)/(Q0R2

0), and n is an integer. For the intended
application, Hebbian learning is envisioned. Therefore (4)
is valid if updating the memristor in one direction ensuring
the resistance is always increasing with increasing n. The
hardware that uses this memristor is described next.

MT
⇠
=

(
R0 n = 0

R0 +
P

n R0
p
a
h
� 1

2

�
b
a

�
+

1
8

�
b
a

�2i
n > 0

(4)

III. MAZE APPLICATION AND HARDWARE
ARCHITECTURE

Given the maze in Fig. 1, we would like to train through
value iteration, the generation of optimal actions to reach the
target (RED) from the start position (GREEN). The 16⇥16
maze shows admissible states in white and inadmissible
states in black. Our approach to solving this maze using
memristors is to store the value of each state (admissible or
inadmissible) in a memristor crossbar. A 16⇥16 memristor
crossbar array is therefore needed to store all values. The
maze pattern can be preprogrammed to the crossbar array
whereby inadmissible states are programmed to ROFF and
the admissible states are programmed to values around an
initial resistance R0. The search space is discretized into time
periods where one move is made per unit time. Each move
made in must either progress to adjacent states or stay at
the current state. For example, if at time period p=1 and the
current state is the green square, then the three valid states
for transition are the two adjacent white squares and the
green square. Decisions regarding state transition are made
by obtaining the stored values of valid states in reference to
the present state. The drawback to this one-step lookahead
approach is its limited depth search that takes longer for
training to converge to an approximation of the optimal path
from start to end.

The memristor crossbar is used to store state values.
Therefore, to reduce hardware complexity with respect to
accessing the crossbar, two crossbars are used: whereby
one stores values in order (Network 1 in Fig. 2) while the

Network
1

Environment

Actor

Controller

Network
2

C C

current
state

current
action

next
state

1st layer neurons

2nd layer
neurons

VREAD

X1 X2 X14 X15 X16

RLOAD

N21

N11 N12 N114 N115 N116

N22

N214

N215

N216

Y1

Y2

Y14

Y15

Y16

Output
Registers

Fig. 2. (Top)System top level (Bottom)Schematic of the Network Compo-
nents

other crossbar stores values of Network 1 mirrored about the
diagonal from the top left corner to the bottom right corner
(Network 2 in Fig. 2). The top level system in Fig. 2 shows
an agent acting on the environment. The components of
the system are: controller, memristor network, comparators
(C blocks), and actor. The actor performs chosen actions,
the comparators compare two values within the memristor
crossbar, the memristor network performs the MAX function
and generates next state information, and the controller
coordinates communication between all components. The
two memristor networks have the same components and a
detailed network schematic is also provided in Fig. 2.

The network blocks have two sets of neurons (1st and
2nd layer), allowing access to the value of each state on the
memristor crossbar array. This architecture approximates a
recurrent neural network. Network 1 is the forward path and
Network 2 is the feedback path. For example, in the maze
application, neurons correspond to horizontal and vertical
coordinates. At any given time the admissible actions are:
stay at current state, move one space in any diagonal,
horizontal, or vertical direction. Network 1 determines the
next Y position, while Network 2 determines the next X
position. The controller coordinates actions of the networks
using four control phases: Start, Run, Check, and Train.

The Start phase is a wait phase whereby the crossbar
network is not accessed. All the switches in Fig. 2 are open,
all input and output neurons disabled, and output registers are

968

Fig. 1. Maze example showing starting position (green square) and ending
position (red square)

(3) can be discretized into n different applications of Vapp

for tspec. In addition, we have shown through [12] that
this discretization leads to memristors behaving as (4). In
(4), a = 1 � �Vapptspecn, b = �Vapptspec, � is defined
as (2⌘�R)/(Q0R2

0), and n is an integer. For the intended
application, Hebbian learning is envisioned. Therefore (4)
is valid if updating the memristor in one direction ensuring
the resistance is always increasing with increasing n. The
hardware that uses this memristor is described next.

MT
⇠
=

(
R0 n = 0

R0 +
P

n R0
p
a
h
� 1

2

�
b
a

�
+

1
8

�
b
a

�2i
n > 0

(4)

III. MAZE APPLICATION AND HARDWARE
ARCHITECTURE

Given the maze in Fig. 1, we would like to train through
value iteration, the generation of optimal actions to reach the
target (RED) from the start position (GREEN). The 16⇥16
maze shows admissible states in white and inadmissible
states in black. Our approach to solving this maze using
memristors is to store the value of each state (admissible or
inadmissible) in a memristor crossbar. A 16⇥16 memristor
crossbar array is therefore needed to store all values. The
maze pattern can be preprogrammed to the crossbar array
whereby inadmissible states are programmed to ROFF and
the admissible states are programmed to values around an
initial resistance R0. The search space is discretized into time
periods where one move is made per unit time. Each move
made in must either progress to adjacent states or stay at
the current state. For example, if at time period p=1 and the
current state is the green square, then the three valid states
for transition are the two adjacent white squares and the
green square. Decisions regarding state transition are made
by obtaining the stored values of valid states in reference to
the present state. The drawback to this one-step lookahead
approach is its limited depth search that takes longer for
training to converge to an approximation of the optimal path
from start to end.

The memristor crossbar is used to store state values.
Therefore, to reduce hardware complexity with respect to
accessing the crossbar, two crossbars are used: whereby
one stores values in order (Network 1 in Fig. 2) while the

Network
1

Environment

Actor

Controller

Network
2

C C

current
state

current
action

next
state

1st layer neurons

2nd layer
neurons

VREAD

X1 X2 X14 X15 X16

RLOAD

N21

N11 N12 N114 N115 N116

N22

N214

N215

N216

Y1

Y2

Y14

Y15

Y16

Output
Registers

Fig. 2. (Top)System top level (Bottom)Schematic of the Network Compo-
nents

other crossbar stores values of Network 1 mirrored about the
diagonal from the top left corner to the bottom right corner
(Network 2 in Fig. 2). The top level system in Fig. 2 shows
an agent acting on the environment. The components of
the system are: controller, memristor network, comparators
(C blocks), and actor. The actor performs chosen actions,
the comparators compare two values within the memristor
crossbar, the memristor network performs the MAX function
and generates next state information, and the controller
coordinates communication between all components. The
two memristor networks have the same components and a
detailed network schematic is also provided in Fig. 2.

The network blocks have two sets of neurons (1st and
2nd layer), allowing access to the value of each state on the
memristor crossbar array. This architecture approximates a
recurrent neural network. Network 1 is the forward path and
Network 2 is the feedback path. For example, in the maze
application, neurons correspond to horizontal and vertical
coordinates. At any given time the admissible actions are:
stay at current state, move one space in any diagonal,
horizontal, or vertical direction. Network 1 determines the
next Y position, while Network 2 determines the next X
position. The controller coordinates actions of the networks
using four control phases: Start, Run, Check, and Train.

The Start phase is a wait phase whereby the crossbar
network is not accessed. All the switches in Fig. 2 are open,
all input and output neurons disabled, and output registers are

968

vn

N1i-1 N1i N1i+1

N2j-1

N2j

N2j+1

Output
Registers

M i
,j-1

M
i,j+1

Cint

Cint

vn

Mi,j
Cint

RLOAD

Mi,j

Mi,j+1

Mi,j-1

Fig. 3. (Left) Activation of neurons (Right) Equivalent circuit of activated
devices

zeros. In the Run phase the network obtains the next position;
the first neuron to spike will have its corresponding output
register latch a “1” while the others are “0,” and will provide
a signal to the controller that this phase is complete. In the
Check phase the digital network asserts VREAD and connects
RLOAD to decipher the values stored at two locations (the
value of current state vs. that of the next state). If the current
state’s sampled voltage is equal to or greater than the next
state’s voltage, then a punish signal is generated. In the Train

phase, the punish signal is used to reduce the weight of
the current state. The neural network approach is used to
translate the time to spike to approximate the environment.
The architecture is a hybrid architecture that combines both
analog processing with digital controls. This architecture
is used to approximate value iteration and is tested in the
context of a simple maze problem.

For the maze application, value iteration updates based on
(2), but the exact nature of the update term, ↵t(st, at) ⇥
(rt+ �t), has not clearly been defined. In the maze problem,
↵t(st, at) will be limited to take on a value of either 1 or 0
and the sum of rt and �t can be cast to take on the value of
�MT which corresponds to the R0

p
a
h
� 1

2

�
b
a

�
+

1
8

�
b
a

�2i

term in (4). This proposed matching works in this application
because the envisioned system has memristors initialized
around R0 and any memristor updates will adjust resistance
by �MT . ↵t(st, at) is 1 if ˜Q(st, at) is greater than or
equal to ˜Qmax(st+1, at+1), otherwise ↵t(st, at) is 0. The
punish signal generated in the Check phase determines which
value ↵t(st, at) takes. This restriction on ↵t(st, at) ensures
˜Qmax(st+1, at+1) is always decreased when updated since
rt + �t is always a positive number.

The value for ↵t(st, at) depends on ˜Qmax(st+1, at+1),
and ˜Qmax(st+1, at+1) is obtained from the neuromorphic
side of the circuit. A simple leaky integrate and fire neuron
should work for this purpose. The left schematic in Fig. 3 is
used to explain the nearest neighbor concept. From a current
X position and a current Y position, switch corresponding
to Xj is activated and Yi�1, Yi, and Yi+1 are enabled. Using
RC integrators to model neuron internal state, the equivalent
circuit for these activated devices is shown (Fig. 3 right).

The first order RC circuit shows that the internal state

0 10 20 30 40 50
0

2

4

6

8

10

12

14

16

(sekips noruen erofeb e
mit

μ
s)

n

 Vthresh=0.9
 Vthresh=0.2

Fig. 4. Effect of vthresh on the charging time to spike

of the neurons take on the form vn(1 � e�t/MijCint
). By

choosing a spiking threshold vthresh for the neurons less than
vn, neuron j can spike whenever vn(1�e�t/MijCint

) reaches
vthresh. The difference between the activated neurons lies in
tjspike, how long it takes for neuron j to spike:

tjspike > �Mij · Cint · ln
✓
1� vthresh

vn

◆
(5)

Figure 4b shows the graph of (5) and how the choice of
vthresh can affect circuit operation. Since the MAX function
depends on the comparison of spike times of different
neurons, separation of these spike times for different n values
is critical for correct circuit operation. By increasing vthresh,
while other parameters are kept at their previous levels, there
is a wider change in spike time. The quoted times are in µs,
and if transistors used for implementation are sensitive to the
hundreds of nanosecond range, then there should be minimal
problem detecting the larger of n=50 and n=51.

0 10 20

200

400

600

800

1000

(15,28)

iteration iteration

st

ep
s

0 10 20 30

200
400
600
800

1000
1200

st

ep
s

(26,45)

(a)

(d)(c)

(b)

Fig. 5. (a,b) Near optimal paths for two mazes from start to finish
(c,d) Number of steps till convergence for each maze

969

Iterative Architecture for Value Iteration using Memristors

Idongesit E. Ebong, Member, IEEE and Pinaki Mazumder, Fellow, IEEE

Abstract— Memristors promise higher device density and de-

sign flexibility. Besides utilizing memristors for digital memory,

another promising avenue for adoption is the advancement

of neural network circuits capable of learning. Neural net-

work implementations with memristors have been proposed,

including memristor synaptic training methodologies. This

work highlights applications of a neural learning methodology

inspired by Q-learning. Memristors are used as analog storage

elements to store a large Q-table. The method is qualified with

a maze problem in order to show that the proposed network

can be used to learn to approximate an optimal path to solving

the maze problem. Brief results highlighting the methodology

on a maze problem and discussion on generating random keys

are provided. This work combines model-free reinforcement

learning with neural networks.

I. INTRODUCTION

Memristors [1],[2] have been proposed for use in different
applications to alleviate hardware complexity issues related
to CMOS-only hardware in the sub-22nm scaling regime.
These applications include FPGA, cellular neural networks,
digital memory, and programmable analog resistors. In addi-
tion, memristors have been proposed for higher-level algo-
rithmic implementations including instar and outstar training
[3], performing optimal control, modeling the visual cortex,
etc [4],[5]. The use of memristors in Boolean computing has
several limitations [6] since direct control of memristors are
very imprecise. Therefore, application areas where precise
resistance values are not required better suit these devices,
as shown in fuzzy system implementations using memristors
[7].

This work accepts the imprecise memristor values and
follows a similar route by striving to realize value iteration
[8] with memristor hardware and providing two applications
of the chosen architecture. Q-Learning learns state-action
values (Q-values); storing these Q-values in tabular form
for the entire state-action space is shown to reach optimal
solutions even under exploration. The drawback associated
with this approach is the memory size requirement for
the tabular form of the algorithm may be prohibitive. In
order to alleviate this problem, function approximators have
been used to reduce memory size. Function approximators
though need careful design since poor design may lead to
divergence. We propose using memristor crossbar instead.
Section II deals with the mathematical details, Section III
introduces the Maze application and the prescribed hardware,

I. E. Ebong is with the Department of Electrical Engineering and
Computer Science at University of Michigan, Ann Arbor, MI 48109 USA.
idong@eecs.umich.edu

P. Mazumder is a professor with the Department of Electrical Engineering
and Computer Science at University of Michigan, Ann Arbor, MI 48109
USA. mazum@eecs.umich.edu

Section IV provides simulation results and discussion, and
Section V concludes the paper.

II. Q-LEARNING AND MEMRISTOR MODELING

Q-learning algorithm [8] is provided in (1). Equation (1)
provides the update for the estimated Q-value (˜Q) at the
current state (st) and action taken at the current state (at).
↵t is a learning parameter, and rt is the reward. In this form
of Q-learning, the model of the environment does not need to
be accurate. Therefore after learning, the exact reward values
do not affect the overall behavior of the network [9].

˜Q (st, at) ˜Q (st, at)⇥ (1� ↵t(st, at)) + ↵t (st, at)⇥ rt

+ ↵t (st, at)⇥ max

at+1

h
˜Q (st+1, at+1)

i

(1)
The MAX function in (1) will produce a value that is a

linear combination between ˜Q(st, at) and another value �t.
The value of �t can be zero, positive or negative. It is a
correcting factor that discerns how far apart the Q-value of
the current state-action pair is from the Q-value of the next
state-action pair. Therefore (1) can be written as (2):

˜Q (st, at) ˜Q (st, at) + ↵t (st, at)⇥ (rt + �t) (2)

since maxat+1

h
˜Q (st+1, at+1)

i
=

˜Q(st, at) + �t. Neural
network inspired approaches have been shown to efficiently
perform maximizing and minimizing functions [10]. Mem-
ristors in the crossbar configuration are not only used as
memory but also as processing elements. By monitoring the
current through selected memory devices, the MAX function
can be evaluated in parallel.

The next step is to cast (1) in a form that parallels
memristor properties. Using the linear-drift dopant diffusion
model [11] the resistive value of a memristor is:

MT = R0

s

1� 2 · ⌘ ·�R · �(t)
Q0 ·R2

0

(3)

MT is the total memristance, R0 is the initial resistance
of the memristor, ⌘ can be viewed as memristor pin con-
figuration with respect to applied voltage that takes on a
value of ±1, �R is the memristor’s resistive range (dif-
ference between maximum resistance ROFF and minimum
resistance RON), �(t) is the total flux through the device,
and Q0 is the charge required to pass through the memristor
for dopant boundary to move a distance comparable to the
device width. By choosing a constant voltage pulse Vapp

and applying this constant pulse for a specified time tspec,

Proceedings of the 14th IEEE
International Conference on Nanotechnology
Toronto, Canada, August 18-21, 2014

978-1-4799-5622-7/$31.00 ©2014 IEEE 967

Iterative Architecture for Value Iteration using Memristors

Idongesit E. Ebong, Member, IEEE and Pinaki Mazumder, Fellow, IEEE

Abstract— Memristors promise higher device density and de-

sign flexibility. Besides utilizing memristors for digital memory,

another promising avenue for adoption is the advancement

of neural network circuits capable of learning. Neural net-

work implementations with memristors have been proposed,

including memristor synaptic training methodologies. This

work highlights applications of a neural learning methodology

inspired by Q-learning. Memristors are used as analog storage

elements to store a large Q-table. The method is qualified with

a maze problem in order to show that the proposed network

can be used to learn to approximate an optimal path to solving

the maze problem. Brief results highlighting the methodology

on a maze problem and discussion on generating random keys

are provided. This work combines model-free reinforcement

learning with neural networks.

I. INTRODUCTION

Memristors [1],[2] have been proposed for use in different
applications to alleviate hardware complexity issues related
to CMOS-only hardware in the sub-22nm scaling regime.
These applications include FPGA, cellular neural networks,
digital memory, and programmable analog resistors. In addi-
tion, memristors have been proposed for higher-level algo-
rithmic implementations including instar and outstar training
[3], performing optimal control, modeling the visual cortex,
etc [4],[5]. The use of memristors in Boolean computing has
several limitations [6] since direct control of memristors are
very imprecise. Therefore, application areas where precise
resistance values are not required better suit these devices,
as shown in fuzzy system implementations using memristors
[7].

This work accepts the imprecise memristor values and
follows a similar route by striving to realize value iteration
[8] with memristor hardware and providing two applications
of the chosen architecture. Q-Learning learns state-action
values (Q-values); storing these Q-values in tabular form
for the entire state-action space is shown to reach optimal
solutions even under exploration. The drawback associated
with this approach is the memory size requirement for
the tabular form of the algorithm may be prohibitive. In
order to alleviate this problem, function approximators have
been used to reduce memory size. Function approximators
though need careful design since poor design may lead to
divergence. We propose using memristor crossbar instead.
Section II deals with the mathematical details, Section III
introduces the Maze application and the prescribed hardware,

I. E. Ebong is with the Department of Electrical Engineering and
Computer Science at University of Michigan, Ann Arbor, MI 48109 USA.
idong@eecs.umich.edu

P. Mazumder is a professor with the Department of Electrical Engineering
and Computer Science at University of Michigan, Ann Arbor, MI 48109
USA. mazum@eecs.umich.edu

Section IV provides simulation results and discussion, and
Section V concludes the paper.

II. Q-LEARNING AND MEMRISTOR MODELING

Q-learning algorithm [8] is provided in (1). Equation (1)
provides the update for the estimated Q-value (˜Q) at the
current state (st) and action taken at the current state (at).
↵t is a learning parameter, and rt is the reward. In this form
of Q-learning, the model of the environment does not need to
be accurate. Therefore after learning, the exact reward values
do not affect the overall behavior of the network [9].

˜Q (st, at) ˜Q (st, at)⇥ (1� ↵t(st, at)) + ↵t (st, at)⇥ rt

+ ↵t (st, at)⇥ max

at+1

h
˜Q (st+1, at+1)

i

(1)
The MAX function in (1) will produce a value that is a

linear combination between ˜Q(st, at) and another value �t.
The value of �t can be zero, positive or negative. It is a
correcting factor that discerns how far apart the Q-value of
the current state-action pair is from the Q-value of the next
state-action pair. Therefore (1) can be written as (2):

˜Q (st, at) ˜Q (st, at) + ↵t (st, at)⇥ (rt + �t) (2)

since maxat+1

h
˜Q (st+1, at+1)

i
=

˜Q(st, at) + �t. Neural
network inspired approaches have been shown to efficiently
perform maximizing and minimizing functions [10]. Mem-
ristors in the crossbar configuration are not only used as
memory but also as processing elements. By monitoring the
current through selected memory devices, the MAX function
can be evaluated in parallel.

The next step is to cast (1) in a form that parallels
memristor properties. Using the linear-drift dopant diffusion
model [11] the resistive value of a memristor is:

MT = R0

s

1� 2 · ⌘ ·�R · �(t)
Q0 ·R2

0

(3)

MT is the total memristance, R0 is the initial resistance
of the memristor, ⌘ can be viewed as memristor pin con-
figuration with respect to applied voltage that takes on a
value of ±1, �R is the memristor’s resistive range (dif-
ference between maximum resistance ROFF and minimum
resistance RON), �(t) is the total flux through the device,
and Q0 is the charge required to pass through the memristor
for dopant boundary to move a distance comparable to the
device width. By choosing a constant voltage pulse Vapp

and applying this constant pulse for a specified time tspec,

Proceedings of the 14th IEEE
International Conference on Nanotechnology
Toronto, Canada, August 18-21, 2014

978-1-4799-5622-7/$31.00 ©2014 IEEE 967

Iterative Architecture for Value Iteration using Memristors

Idongesit E. Ebong, Member, IEEE and Pinaki Mazumder, Fellow, IEEE

Abstract— Memristors promise higher device density and de-

sign flexibility. Besides utilizing memristors for digital memory,

another promising avenue for adoption is the advancement

of neural network circuits capable of learning. Neural net-

work implementations with memristors have been proposed,

including memristor synaptic training methodologies. This

work highlights applications of a neural learning methodology

inspired by Q-learning. Memristors are used as analog storage

elements to store a large Q-table. The method is qualified with

a maze problem in order to show that the proposed network

can be used to learn to approximate an optimal path to solving

the maze problem. Brief results highlighting the methodology

on a maze problem and discussion on generating random keys

are provided. This work combines model-free reinforcement

learning with neural networks.

I. INTRODUCTION

Memristors [1],[2] have been proposed for use in different
applications to alleviate hardware complexity issues related
to CMOS-only hardware in the sub-22nm scaling regime.
These applications include FPGA, cellular neural networks,
digital memory, and programmable analog resistors. In addi-
tion, memristors have been proposed for higher-level algo-
rithmic implementations including instar and outstar training
[3], performing optimal control, modeling the visual cortex,
etc [4],[5]. The use of memristors in Boolean computing has
several limitations [6] since direct control of memristors are
very imprecise. Therefore, application areas where precise
resistance values are not required better suit these devices,
as shown in fuzzy system implementations using memristors
[7].

This work accepts the imprecise memristor values and
follows a similar route by striving to realize value iteration
[8] with memristor hardware and providing two applications
of the chosen architecture. Q-Learning learns state-action
values (Q-values); storing these Q-values in tabular form
for the entire state-action space is shown to reach optimal
solutions even under exploration. The drawback associated
with this approach is the memory size requirement for
the tabular form of the algorithm may be prohibitive. In
order to alleviate this problem, function approximators have
been used to reduce memory size. Function approximators
though need careful design since poor design may lead to
divergence. We propose using memristor crossbar instead.
Section II deals with the mathematical details, Section III
introduces the Maze application and the prescribed hardware,

I. E. Ebong is with the Department of Electrical Engineering and
Computer Science at University of Michigan, Ann Arbor, MI 48109 USA.
idong@eecs.umich.edu

P. Mazumder is a professor with the Department of Electrical Engineering
and Computer Science at University of Michigan, Ann Arbor, MI 48109
USA. mazum@eecs.umich.edu

Section IV provides simulation results and discussion, and
Section V concludes the paper.

II. Q-LEARNING AND MEMRISTOR MODELING

Q-learning algorithm [8] is provided in (1). Equation (1)
provides the update for the estimated Q-value (˜Q) at the
current state (st) and action taken at the current state (at).
↵t is a learning parameter, and rt is the reward. In this form
of Q-learning, the model of the environment does not need to
be accurate. Therefore after learning, the exact reward values
do not affect the overall behavior of the network [9].

˜Q (st, at) ˜Q (st, at)⇥ (1� ↵t(st, at)) + ↵t (st, at)⇥ rt

+ ↵t (st, at)⇥ max

at+1

h
˜Q (st+1, at+1)

i

(1)
The MAX function in (1) will produce a value that is a

linear combination between ˜Q(st, at) and another value �t.
The value of �t can be zero, positive or negative. It is a
correcting factor that discerns how far apart the Q-value of
the current state-action pair is from the Q-value of the next
state-action pair. Therefore (1) can be written as (2):

˜Q (st, at) ˜Q (st, at) + ↵t (st, at)⇥ (rt + �t) (2)

since maxat+1

h
˜Q (st+1, at+1)

i
=

˜Q(st, at) + �t. Neural
network inspired approaches have been shown to efficiently
perform maximizing and minimizing functions [10]. Mem-
ristors in the crossbar configuration are not only used as
memory but also as processing elements. By monitoring the
current through selected memory devices, the MAX function
can be evaluated in parallel.

The next step is to cast (1) in a form that parallels
memristor properties. Using the linear-drift dopant diffusion
model [11] the resistive value of a memristor is:

MT = R0

s

1� 2 · ⌘ ·�R · �(t)
Q0 ·R2

0

(3)

MT is the total memristance, R0 is the initial resistance
of the memristor, ⌘ can be viewed as memristor pin con-
figuration with respect to applied voltage that takes on a
value of ±1, �R is the memristor’s resistive range (dif-
ference between maximum resistance ROFF and minimum
resistance RON), �(t) is the total flux through the device,
and Q0 is the charge required to pass through the memristor
for dopant boundary to move a distance comparable to the
device width. By choosing a constant voltage pulse Vapp

and applying this constant pulse for a specified time tspec,

Proceedings of the 14th IEEE
International Conference on Nanotechnology
Toronto, Canada, August 18-21, 2014

978-1-4799-5622-7/$31.00 ©2014 IEEE 967

Q-Learning Hardware – Reinforcement Learning

Evaluative Feedback (Rewards)

vn

N1i-1 N1i N1i+1

N2j-1

N2j

N2j+1

Output
Registers

M i,
j-1

M
i,j+1

Cint

Cint

vn

Mi,j
Cint

RLOAD

Mi,j

Mi,j+1

Mi,j-1

Fig. 3. (Left) Activation of neurons (Right) Equivalent circuit of activated
devices

zeros. In the Run phase the network obtains the next position;
the first neuron to spike will have its corresponding output
register latch a “1” while the others are “0,” and will provide
a signal to the controller that this phase is complete. In the
Check phase the digital network asserts VREAD and connects
RLOAD to decipher the values stored at two locations (the
value of current state vs. that of the next state). If the current
state’s sampled voltage is equal to or greater than the next
state’s voltage, then a punish signal is generated. In the Train

phase, the punish signal is used to reduce the weight of
the current state. The neural network approach is used to
translate the time to spike to approximate the environment.
The architecture is a hybrid architecture that combines both
analog processing with digital controls. This architecture
is used to approximate value iteration and is tested in the
context of a simple maze problem.

For the maze application, value iteration updates based on
(2), but the exact nature of the update term, ↵t(st, at) ⇥
(rt+ �t), has not clearly been defined. In the maze problem,
↵t(st, at) will be limited to take on a value of either 1 or 0
and the sum of rt and �t can be cast to take on the value of
�MT which corresponds to the R0

p
a
h
� 1

2

�
b
a

�
+

1
8

�
b
a

�2i

term in (4). This proposed matching works in this application
because the envisioned system has memristors initialized
around R0 and any memristor updates will adjust resistance
by �MT . ↵t(st, at) is 1 if ˜Q(st, at) is greater than or
equal to ˜Qmax(st+1, at+1), otherwise ↵t(st, at) is 0. The
punish signal generated in the Check phase determines which
value ↵t(st, at) takes. This restriction on ↵t(st, at) ensures
˜Qmax(st+1, at+1) is always decreased when updated since
rt + �t is always a positive number.

The value for ↵t(st, at) depends on ˜Qmax(st+1, at+1),
and ˜Qmax(st+1, at+1) is obtained from the neuromorphic
side of the circuit. A simple leaky integrate and fire neuron
should work for this purpose. The left schematic in Fig. 3 is
used to explain the nearest neighbor concept. From a current
X position and a current Y position, switch corresponding
to Xj is activated and Yi�1, Yi, and Yi+1 are enabled. Using
RC integrators to model neuron internal state, the equivalent
circuit for these activated devices is shown (Fig. 3 right).

The first order RC circuit shows that the internal state

0 10 20 30 40 50
0

2

4

6

8

10

12

14

16

(sekips noruen erofeb e
mit

μs
)

n

 Vthresh=0.9
 Vthresh=0.2

Fig. 4. Effect of vthresh on the charging time to spike

of the neurons take on the form vn(1 � e�t/MijCint
). By

choosing a spiking threshold vthresh for the neurons less than
vn, neuron j can spike whenever vn(1�e�t/MijCint

) reaches
vthresh. The difference between the activated neurons lies in
tjspike, how long it takes for neuron j to spike:

tjspike > �Mij · Cint · ln
✓
1� vthresh

vn

◆
(5)

Figure 4b shows the graph of (5) and how the choice of
vthresh can affect circuit operation. Since the MAX function
depends on the comparison of spike times of different
neurons, separation of these spike times for different n values
is critical for correct circuit operation. By increasing vthresh,
while other parameters are kept at their previous levels, there
is a wider change in spike time. The quoted times are in µs,
and if transistors used for implementation are sensitive to the
hundreds of nanosecond range, then there should be minimal
problem detecting the larger of n=50 and n=51.

0 10 20

200

400

600

800

1000

(15,28)

iteration iteration

st

ep
s

0 10 20 30

200
400
600
800

1000
1200

st

ep
s

(26,45)

(a)

(d)(c)

(b)

Fig. 5. (a,b) Near optimal paths for two mazes from start to finish
(c,d) Number of steps till convergence for each maze

969

Memristor Model Used in
Matlab Simulation

Performance of Memristor Q-Learning Hardware

IV. RESULTS AND DISCUSSION

The current simulation results for the models derived
were obtained through MATLAB. The parameters used for
simulation were vthresh/vn = 0.75, Vapp=1.2 V, Cint=1 pF,
tspec=2 ms, �=-199.8 V�1·s�1, R0=2 M⌦, RON=20 k⌦,
and ROFF =20 M⌦. Fig. 5a and Fig. 5b provide path from
start to finish when using the architecture of Fig. 2. Fig. 5c
and Fig. 5d, respectively, provide the relationship for number
of steps to reaching the target vs. number of training stages
for convergence. The hardware prefers exploration in the first
iteration. During the second iteration, the number of steps is
drastically reduced. The maze in Fig. 5a has two paths to
target, but the shorter route is chosen. Fig. 5b has a longer
path to target, hence, it takes longer to converge.

The paths shown in the solutions are near-optimal, with
the suboptimal moves circled. After convergence, memristor
updates cease on their own, therefore, ensuring the hardware
will monitor its own performance. This quality allows for
this application to be extended to key generation using
memristive neural hardware. This approach can generate
multiple keys due to the nature of the architecture. Fig. 6
plots relative values of the memristor on the Z axis vs.
the position on a 2D grid. From one iteration to the next,
the entire crossbar could look very different, so if multiple
random keys were to be generated using the fabric on the
left, it would be very hard to reconstruct that key using the
fabric on the right.

The current hardware is very specific to the maze search
application but is useful in neural processing systems as a
whole. Neural systems rely on the updating of synapses be-
tween neurons based on network activity as time progresses.
The Q-Learning inspired approach traverses a network of
synapses in particular orders therefore one very good use
of this method would be the adjusting of synapse values
relative to one another without actually preprogramming the
sequence of updates. With the uncertainties in memristors,
effectively programming the devices to specific resistances
are out of the question. By using a method like this that
allows synaptic devices to be adjusted, one after another in
order to meet overall processing requirements may be the
breakthrough necessary to finally utilizing these devices as
synapses. In neuromorphic applications, the absolute synap-
tic weight value does not matter as long as the relative weight
relationship of the weight matrix are maintained. This Q-

0
5

10
15

20

0

5

10

15

20
−40

−30

−20

−10

0

10

0
5

10
15

20

0

5

10

15

20
−40

−30

−20

−10

0

X Y X Y

Fig. 6. (Left) Memristor Fabric with relative values after one iteration
(Right) Memristor Fabric with relative weights after two iterations

Learning method would provide a way to adjust weights in
order while avoiding the hardware cost of having outside
cache memories to keep track of which synaptic elements
need to be adjusted.

V. CONCLUSION

We have shown the concept of value iteration being
applied to the memristor crossbar in a way that is realizable
with the aid of CMOS hardware. We have shown how
maze learning can be implemented using the crossbar along
the same lines as value iteration with Q-values. We have
dissected the memristor modeling equation to show that the
neural network model whereby state information can be
translated to delayed spike timing is shown. Overall, the
target of the proposed implementation is a mixed signal
design that combines the benefits of analog circuits, digital
domain spike representations, and the use of memristors as
synapses.

The next step is to verify this use of memristor crossbar
in hardware and to apply the concept to various other appli-
cations. As this method deals with the process of adjusting
memristor values on the crossbar in a non-programmable
manner, the applications that would benefit from it would
need to be neuromorphic ones where the memristor crossbar
array needs to be adjusted in its entirety. Providing a method
for this to happen algorithmically without preprogramming
would be the best course of action.

REFERENCES

[1] L. O. Chua, “Memristor - missing circuit element,” IEEE Transactions

on Circuit Theory, vol. CT18, no. 5, pp. 507–519, 1971.
[2] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The

missing memristor found,” Nature, vol. 453, no. 7191, pp. 80–83,
2008.

[3] G. Snider, “Instar and outstar learning with memristive nanodevices,”
Nanotechnology, vol. 22, no. 1, p. 015201, 2011. [Online]. Available:
http://stacks.iop.org/0957-4484/22/i=1/a=015201

[4] P. Mazumder, S. M. Kang, and R. Waser, “Memristors: Devices,
models, and applications [scanning the issue],” Proceedings of the

IEEE, vol. 100, no. 6, pp. 1911 –1919, june 2012.
[5] P. J. Werbos, “Memristors for more than just memory: How to

use learning to expand applications,” in Advances in Neuromorphic

Memristor Science and Applications, ser. Springer Series in Cognitive
and Neural Systems, R. Kozma, R. E. Pino, G. E. Pazienza, J. G.
Taylor, and V. Cutsuridis, Eds., vol. 4. Springer Netherlands, 2012,
pp. 63–73.

[6] I. E. Ebong and P. Mazumder, “Self-controlled writing and erasing in
a memristor crossbar memory,” Nanotechnology, IEEE Transactions

on, vol. 10, no. 6, pp. 1454–1463, 2011.
[7] F. Merrikh-Bayat and S. Bagheri Shouraki, “Memristive neuro-fuzzy

system,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE

Transactions on, vol. PP, no. 99, pp. 1–17, 2012.
[8] C. J. C. H. Watkins, “Learning from Delayed Rewards,” Ph.D. disser-

tation, Cambridge University, 1989.
[9] B. Balleine, N. Daw, and J. O’Doherty, “Multiple Forms of Value

Learning and the Function of Dopamine,” in Neuroeconomics: decision

making and the brain, P. W. Glimcher, Ed. Academic Press, 2009,
pp. 367–385.

[10] J. J. Hopfield and D. W. Tank, “‘Neural’ computation of decisions
in optimization problems,” Biological Cybernetics, vol. 52, no. 3, pp.
141–152, 1985.

[11] Y. N. Joglekar and S. J. Wolf, “The elusive memristor: properties of
basic electrical circuits,” European Journal of Physics, vol. 30, no. 4,
pp. 661–675, 2009.

[12] I. E. Ebong, “Training memristors for reliable computing,” Ph.D.
dissertation, The University of Michigan, 2013.

970

Synapse States after
1st and 2nd Iterations

Idong and Mazumder, IIEEE Nano 2014

 Plasticity (STDP) Based Learning Chip
for Virtual Bug Navigation

Non-Evaluative Feedback (Correlation)

consist of a training controller, a testing controller, a mux to select
between training signals and testing signals, a training signal
generator and the SNN.

Fig. 6 also shows the dataflow of each design. The biggest dif-
ference between Fig. 6a and b is peripheral circuitry needed to
handle the differing network sizes. Fig. 6a has a block for the SNN
which contains 7 neurons and 8 synapses while Fig. 6b needed to
be broken apart in order to handle the wire connectivity. The
floorplans correspond directly to the layouts so those are not
included in this article. In layout pictures, each major block is
circled and corresponds to a block shown in the corresponding
floor plan. Table 2 breaks down the layout area of each major
component defined Fig. 6. The full chip area without pads for each
design is provided as well. With pads included, the small design
has an area of 2.8 mm by 2.8 mm while the larger design has an
area of 6.5 mm by 4.8 mm.

Table 3 shows the power consumption of both designs.
Although, in term of the number of neurons, the large design is 58
times of the small design, its area is only 4 times of the small
design and its power consumption is only 9 times of the small
design. This implies that the area and power consumption of the
design do not increase linearly with respect to the size of the
design and thus allows us to increase the design’s size with lower
cost. The next section presents the results of both chips and pro-
vides a cross comparison between all platforms.

4. Results and discussion

The indirect training algorithm was implemented in MATLAB,
FPGA and CMOS to train the SNN presented in Section 2 to allow
the virtual insect to perform the terrain navigation task. The small
design has also been tested on an Altera Cyclone II EPC20F484C7
FPGA board to ensure that the implemented design works in real
hardware. To implement the small design 21,172 logic elements
and 1104 dedicated logic register were used.

The performance of the trained insect was first evaluated by
MATLAB simulations, as demonstrated in Fig. 7, in which the green
line and the blue line depict trails of the untrained state and the
trained state of the virtual insect, respectively. The results show
that after the SNN was fully trained, the virtual bug was capable of

Table 2
Layout area of both CMOS designs.

SMALL LARGE
Block Area Block Area

SNN 800 μm!400 μm Input layer 4600 μm!1600 μm
Hidden layer 3750 μm!500 μm
Output layer 800 μm!200 μm!2

Training signal
generator

450 μm!20 μm Training signal
generator

710 μm!36 μm

Testing
controller

300 μm!980 μm Testing
controller

900 μm!400 μm

Training
controller

720 μm!160 μm Training
controller

4900 μm!200 μm

Control signal
mux

300 μm!300 μm Control signal
mux

950 μm!800 μm

Whole chip
without pads

1500 μm!1200 μm Whole chip
without pads

5200 μm!4000 μm

Table 3
Layout area of both CMOS designs

Total
power/
mW

Leakage/μW SNN's
power/
mW

Other
power/
mW

of
neurons

Large design 13.24 1.06 9.485 3.755 406
Small
design

1.468 0.0679 0.889 0.579 7

Large/small
ratio

9.019 15.61 10.669 6.485 58

Fig. 7. Trails of the virtual insect on a uniform, obstacle-free terrain and on a terrain with different roughness, populated by obstacles [1]. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Untrained hardware virtual insect trajectory on a map of size 1000!1000.

P. Mazumder et al. / INTEGRATION, the VLSI journal 54 (2016) 109–117114

VLSI Journal, 2015

Conclusion

 Facets of Neuromorphic or Brain-like Computing:

 1. Self-Healing 2. Learning & Plasticity
 3. Cognition 3. Associative Memory

Adaptive Hardware Platform: Optimal control theory, multi-agent systems,
swarm intelligence, robot control, computer games, telecommunications, smart grid for
power distribution, and Markov decision process (MDP)

