# Brain-like Computing -Technologies and Architectures

Prof. Pinaki Mazumder University of Michigan Ann Arbor, MI 48105

Acknowledgement: National Science Foundation (CCF & ECCS)





**Perceptron Mark 1** 





TrueNorth (IBM) ~ 1 M Neurons

#### Mazumder Group's Neuromorphic Research

#### Self-Healing VLSI Design (1989-1996)

Hopfield Neural Net as Algorithmic Hardware for Spare Allocation by Node Cover over Bipartite Graph

- IEEE Trans. on CAS, 1993
- IEEE Trans. on CAS, 1993
- IEEE Trans. on Computer, 1996

#### Cellular Neural Networks (2008-2013)

- Color Image Processing
- Velocity Tuned Filter
- Memristor/RRAM based CNN
- RTD+HEMT based CNN
- IEEE Trans. on VLSI, 2009
- IEEE Trans. on Nanotechnology, 2008
- IEEE Trans. on Neural Nets, 2014
- IEEE Trans. on Nanotechnology, 2013
- ACM Journal on Emerging Technologies in Computing Systems, 2013

# Learning based VLSI Chips (2010-2016)

**STDP Learning** for Position Detector **STDP Learning** for Virtual Bug Navigation **STDP Learning** for XOR/Edge Detection

**Q-Learning** for Maze Search Algorithm on Memristor Array

#### **Reinforcement Learning/Actor-Critic NN** for Optimal Nonlinear Control Applications

- Proceedings of the IEEE, 2012
- Nano Letters Journal, 2010
- IEEE Trans. on Computer, 2016
- IEEE Nanotechnology, 2011
- IEEE Nanotechnology, 2014
- IEEE Cellular Neural Networks, 2012

Neuromorphic Self-Healing Memory Design using Memristor Array

Product Code (SEC), Augmented PC (DEC) → Requires Muxes (~8%) Hamming Code (SEC) → Higher Overhead Projective Geometry Code (DEC/TED) → Galois Field Decoding, ... BCH & Reed Solomon (DEC) → Decoding complexity is high

## High Density a-Si Based Nano-Crossbar





### It is Scalable and CMOS Compatible.

Contraction of the state of

1kb crossbar array

> Jo et al. *Nano Lett.*, 9, 870 (2009). From Prof. Wei Lu's Research <u>Group</u>

> > Fabbed by Wei Lu's Group at Univ. of Michigan

## Compaction of Faulty Array & Find Vertex Cover in Bipartite Graph





Find Vertex Cover: [R1, R2; C1, C3] Defective Cells are Edges in Bipartite Graph

Unrestricted Vertex Cover Problem can Be solved in Polynomial Time by Bipartite Graph Matching Algorithm. However, Restricted Vertex Cover Problem is NP-complete.

## Neuromorphic Self-Healing for Any Type of Memory Array



## Fusion of Sensing & Processing

Nanoscale Cellular Neural Network (CNN) by Using Quantum Tunneling Devices & Memristor Array

# Fusion of Sensing & Processing





°a-Si

p-Si

3-D Confined Quantum Box Array

> Memristor Array

> > 9



High Resistance State (HRS)

MICHIGAN

Low Resistance State (LRS)



#### Analog Programmable Nano-Architecture for Static and Dynamic Image Processing



### Analog Programmable Unconventional Computing



Spike Timing Dependent Plasticity (STDP) Learning Networks using Memristors

# **Biological Neuron Model**

#### **Ionic Transport in Biological Neuron & its Silicon Implementation**

0000







## Spike Timing Dependent Plasticity (STDP) Learning Networks



## Previous Approach of STDP Implementation On Crossbar with Constant Amplitude

Programming pulses with different pulse widths



## **Position Detector Application**

- Split up area into a 5x5 grid
- Each grid has one neuron that is connected to an adjacent neuron through STDP synapse
- Detect a light source at any position on the grid
- No post-processing circuitry necessary
- k-Winner-Take-All (k-WTA) implementation



#### **STDP Neural Circuit for Position Detector**





Global STDP

|                  | Design                                  | Design                             |
|------------------|-----------------------------------------|------------------------------------|
| Synaptic area    | < (0.5μm x<br>0.5μm)                    | 17µm x 16µm                        |
| Synaptic Density | >4 devices/μm <sup>2</sup><br>×1000     | 0.0037 devices/<br>μm <sup>2</sup> |
| Neuron area      | 20µm x 10µm                             | 8μm x 12μm                         |
| Neuron Density   | 0.005 devices/<br>µm <sup>2</sup><br>x2 | 0.0104 devices/<br>μm <sup>2</sup> |
| Volatility       | Nonvolatile                             | Volatile                           |
|                  |                                         |                                    |

Ebong, and Mazumder, Proceedings of the IEEE, Feb. 2012.

## **STDP Circuits for XOR/Edge Detector**



## **Reinforcement Learning Networks**

Memristor Based Q-Learning Network

CMOS Digital Actor-Critic Network

#### **Q-Learning Hardware – Reinforcement Learning**



#### **Performance of Memristor Q-Learning Hardware**





Memristor Model Used in Matlab Simulation



#### Idong and Mazumder, IIEEE Nano 2014

#### Synapse States after 1<sup>st</sup> and 2<sup>nd</sup> Iterations

### Plasticity (STDP) Based Learning Chip for Virtual Bug Navigation

**Non-Evaluative Feedback (Correlation)** 



## Conclusion

Facets of Neuromorphic or Brain-like Computing:

Self-Healing
Cognition

Learning & Plasticity
Associative Memory



**Adaptive Hardware Platform:** Optimal control theory, multi-agent systems, swarm intelligence, robot control, computer games, telecommunications, smart grid for power distribution, and Markov decision process (MDP)